Using Isometry to Classify Correct/Incorrect 3D-2D Correspondences
نویسندگان
چکیده
Template-based methods have been successfully used for surface detection and 3D reconstruction from a 2D input image, especially when the surface is known to deform isometrically. However, almost all such methods require that keypoint correspondences be first matched between the template and the input image. Matching thus exists as a current limitation because existing methods are either slow or tend to perform poorly for discontinuous or unsmooth surfaces or deformations. This is partly because the 3D isometric deformation constraint cannot be easily used in the 2D image directly. We propose to resolve that difficulty by detecting incorrect correspondences using the isometry constraint directly in 3D. We do this by embedding a set of putative correspondences in 3D space, by estimating their depth and local 3D orientation in the input image, from local image warps computed quickly and accurately by means of Inverse Composition. We then relax isometry to inextensibility to get a first correct/incorrect classification using simple pairwise constraints. This classification is then efficiently refined using higher-order constraints, which we formulate as the consistency between the correspondences’ local 3D geometry. Our algorithm is fast and has only one free parameter governing the precision/recall trade-off. We show experimentally that it significantly outperforms state-of-the-art.
منابع مشابه
Improving Image-Based Localization through Increasing Correct Feature Correspondences
Image-based localization is to provide contextual information based on a query image. Current state-of-the-art methods use 3D Structure-from-Motion reconstruction model to aid in localizing the query image, either by 2D-to-3D matching or by 3D-to-2D matching. By adding camera pose estimation, the system can perform image localization more accurately. However, incorrect feature correspondences b...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملAccurate Single Image Multi-modal Camera Pose Estimation
A well known problem in photogrammetry and computer vision is the precise and robust determination of camera poses with respect to a given 3D model. In this work we propose a novel multi-modal method for single image camera pose estimation with respect to 3D models with intensity information (e.g., LiDAR data with reflectance information). We utilize a direct point based rendering approach to g...
متن کاملMonocular Template-Based Reconstruction of Smooth and Inextensible Surfaces
We present different approaches to reconstructing an inextensible surface from point correspondences between an input image and a template image representing a flat reference shape from a frontoparallel point of view. We first propose a ‘point-wise’ method, i.e. a method that only retrieves the 3D positions of the point correspondences. This method is formulated as a second-order cone program a...
متن کاملGlobal Optimization of Object Pose and Motion from a Single Rolling Shutter Image with Automatic 2D-3D Matching
Low cost CMOS cameras can have an acquisition mode called rolling shutter which sequentially exposes the scan-lines. When a single object moves with respect to the camera, this creates image distortions. Assuming 2D-3D correspondences known, previous work showed that the object pose and kinematics can be estimated from a single rolling shutter image. This was achieved using a suboptimal initial...
متن کامل